10 research outputs found

    Optical imaging of strain in two-dimensional crystals

    Full text link
    Strain engineering is widely used in material science to tune the (opto-)electronic properties of materials and enhance the performance of devices. Two-dimensional atomic crystals are a versatile playground to study the influence of strain, as they can sustain very large deformations without breaking. Various optical techniques have been employed to probe strain in two-dimensional materials, including micro-Raman and photoluminescence spectroscopy. Here we demonstrate that optical second harmonic generation constitutes an even more powerful technique, as it allows to extract the full strain tensor with a spatial resolution below the optical diffraction limit. Our method is based on the strain-induced modification of the nonlinear susceptibility tensor due to a photoelastic effect. Using a two-point bending technique, we determine the photoelastic tensor elements of molybdenum disulfide. Once identified, these parameters allow us to spatially image the two-dimensional strain field in an inhomogeneously strained sample.Comment: 13 pages, 4 figure

    Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2

    No full text
    Second-harmonic generation (SHG) is a powerful measurement technique to analyze the symmetry properties of crystals. Mechanical strain can reduce the symmetry of a crystal and even weak strain can have a considerable impact on the SHG intensity along different polarization directions. The impact of strain on the SHG can be modeled with a second-order nonlinear photoelastic tensor. In this work, we determined the photoelastic tensors at a fundamental wavelength of 800 nm for four different transition metal dichalcogenide (TMD) monolayers: MoS2, MoSe2, WS2, and WSe2. Strain is applied using a three-point bending scheme, and the polarization-resolved SHG pattern is measured in backscattering geometry. Furthermore, we connected the strain dependent SHG with the strain dependence of the A-exciton energy. With the second-order nonlinear photoelastic tensor, full strain information can be accurately extracted from polarization-resolved SHG measurements. Accordingly, uniaxial strain, induced by polydimethylsiloxan (PDMS) exfoliation and transfer, is measured. We find that TMD monolayers fabricated with PDMS are strained by ∼0.2%. With the experimentally determined nonlinear photoelastic tensors, it will be possible to optically probe arbitrary strain fields in TMD monolayers

    Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions

    No full text

    A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway

    No full text
    The stress-responsive epigenetic repressor histone deacetylase 4 (HDAC4) regulates cardiac gene expression. Here we show that the levels of an N-terminal proteolytically derived fragment of HDAC4, termed HDAC4-NT, are lower in failing mouse hearts than in healthy control hearts. Virus-mediated transfer of the portion of the Hdac4 gene encoding HDAC4-NT into the mouse myocardium protected the heart from remodeling and failure; this was associated with decreased expression of Nr4a1, which encodes a nuclear orphan receptor, and decreased NR4A1-dependent activation of the hexosamine biosynthetic pathway (HBP). Conversely, exercise enhanced HDAC4-NT levels, and mice with a cardiomyocyte-specific deletion of Hdac4 show reduced exercise capacity, which was characterized by cardiac fatigue and increased expression of Nr4a1. Mechanistically, we found that NR4A1 negatively regulated contractile function in a manner that depended on the HBP and the calcium sensor STIM1. Our work describes a new regulatory axis in which epigenetic regulation of a metabolic pathway affects calcium handling. Activation of this axis during intermittent physiological stress promotes cardiac function, whereas its impairment in sustained pathological cardiac stress leads to heart failure
    corecore